Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Anwar Usman, ${ }^{\text {a }}$ Ibrahim Abdul Razak, ${ }^{\text {a }}$ Suchada
Chantrapromma, ${ }^{\text {a }}$ † Hoong-Kun
Fun, ${ }^{\text {a* }}$ Dipanjan Pan ${ }^{\text {b }}$ and Jayanta Kumar Ray ${ }^{\text {b }}$

${ }^{\text {a X X-ray Crystallography Unit, School of Physics, }}$ Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ${ }^{\mathbf{b}}$ Department of Chemistry, Indian Institute of Technology, Kharagpur 721302 WB, India

+ Permanent Address:, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand.

Correspondence e-mail: hkfun@usm.my

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.053$
$w R$ factor $=0.150$
Data-to-parameter ratio $=18.5$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2001 International Union of Crystallography Printed in Great Britain - all rights reserved

Bis[4-(5-methoxycarbonyl-2-thienyl)phenyl] sulfide

In the title compound, $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{~S}_{3}$, the central S atom lies on a twofold axis. The asymmetric unit, one half of the molecule, is almost planar, with a dihedral angle between the phenyl and thienyl rings of $10.9(1)^{\circ}$. The $\mathrm{C} 1-\mathrm{S} 1-\mathrm{C1}^{\prime}$ angle is $103.5(1)^{\circ}$.

Comment

Supramolecular chemistry based on molecular recognition has added a new dimension to chemistry and stereochemistry and is a fast growing subject. Considered efforts generally directed towards modeling for biological non-covalent binding in chemical systems resulted not only in the synthesis of numerous artificial receptors but also in the development of innovative approaches to the generation of selective noncovalent binders (Haldar et al., 1997). Ray et al. (2001) have prepared the title compound, (I), by a very recent method developed for the synthesis of sulfur pivoted cavity-shaped polycyclic thiophene derivatives in three steps from diphenyl sulfide. We have undertaken an X-ray structure determination of (I) in order to establish its chemical structure and conformation.

(I)

In compound (I), the bond lengths and angles show normal values. The values in the phenylthiophene moiety agree with those observed in the related structure previously studied (Joseph et al., 1991). The $\mathrm{C} 1-\mathrm{S} 1-\mathrm{C}^{\prime}$ angle is $103.5(1)^{\circ}$.

In the structure of (I) there is only one half of the molecule in the asymmetric unit, and the unit cell contains four molecules. One half of the molecule is related to the other by a twofold axis passing through the S1 atom and is nearly planar. Both the phenyl and thienyl rings are planar, with maximum deviations of 0.009 (3) \AA at C 3 and 0.009 (2) \AA at $C 7$. The mean planes through the phenyl and thienyl rings form a dihedral angle of $10.9(1)^{\circ}$. The carbomethoxy group is also planar and is twisted by $8.4(1)^{\circ}$ from the plane of the thienyl ring.

Experimental

The title compound, (I), was synthesized from commercially available diphenyl sulfide (Aldrich) by Friedel-Crafts acylation with excess of acetyl chloride and anhydrous aluminium chloride followed by the

Received 25 July 2001
Accepted 2 August 2001
Online 10 August 2001

Figure 1
The structure of the title compound showing 50% probability displacement ellipsoids and the atom-numbering scheme.
formation of bis-chloroaldehyde (phosphorusoxytrichloride and dimethylformamide) and its condensation with two equivalents of methyl thioglycolate/triethylamine, and concomitant ring closure with 50% potasium hydroxide. Single crystals suitable for X-ray structure determination were obtained by slow evaporation from a benzene solution.

Crystal data
$\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{~S}_{3}$
$M_{r}=466.56$
Monoclinic, $C 2 / c$
$a=11.8692$ (3) £
$b=6.0255$ (2) A
$c=29.7783$ (6) \AA
$\beta=94.221(1)^{\circ}$
$V=2123.9(1) \AA^{3}$
$Z=4$

$$
\begin{aligned}
& D_{x}=1.459 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 4461 \\
& \quad \text { reflections } \\
& \theta=1.4-28.5^{\circ} \\
& \mu=0.38 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Prism, yellow } \\
& 0.48 \times 0.44 \times 0.18 \mathrm{~mm}
\end{aligned}
$$

Data collection

Siemens SMART CCD areadetector diffractometer
ω scans
Absorption correction: empirical
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.839, T_{\text {max }}=0.935$
7327 measured reflections
2620 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.053$
$w R\left(F^{2}\right)=0.151$
$S=1.03$
2620 reflections
142 parameters

1895 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.062$
$\theta_{\text {max }}=28.6^{\circ}$
$h=-13 \rightarrow 15$
$k=-7 \rightarrow 8$
$l=-36 \rightarrow 39$
Intensity decay: negligible

H -atom parameters constrained $w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0803 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.27 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.32 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\left(\mathrm{A},{ }^{\circ}\right)$.

$\mathrm{S} 1-\mathrm{C} 1$	$1.765(2)$	$\mathrm{C} 4-\mathrm{C} 7$	$1.464(3)$
$\mathrm{S} 2-\mathrm{C} 10$	$1.715(2)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.364(3)$
$\mathrm{S} 2-\mathrm{C} 7$	$1.718(2)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.389(3)$
$\mathrm{O} 1-\mathrm{C} 12$	$1.431(3)$	$\mathrm{C} 9-\mathrm{C} 10$	$1.354(3)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.384(3)$	$\mathrm{C} 10-\mathrm{C} 11$	$1.462(3)$
$\mathrm{C} 1-\mathrm{S} 1-\mathrm{C} 1^{\mathrm{i}}$	$103.51(14)$	$\mathrm{C} 9-\mathrm{C} 10-\mathrm{S} 2$	$111.44(18)$
$\mathrm{C} 10-\mathrm{S} 2-\mathrm{C} 7$	$91.82(11)$	$\mathrm{O} 2-\mathrm{C} 11-\mathrm{C} 10$	$124.5(2)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{S} 1$	$118.83(17)$	$\mathrm{O} 1-\mathrm{C} 11-\mathrm{C} 10$	$111.4(2)$
$\mathrm{C} 8-\mathrm{C} 7-\mathrm{S} 2$	$110.07(17)$		
$\mathrm{C} 1^{\mathrm{i}}-\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 6$	$143.3(2)$	$\mathrm{S} 2-\mathrm{C} 10-\mathrm{C} 11-\mathrm{O} 2$	$9.5(4)$
$\mathrm{C} 1^{\mathrm{i}}-\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 2$	$-41.89(19)$	$\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11-\mathrm{O} 1$	$7.8(4)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 7-\mathrm{S} 2$	$11.9(3)$		

Symmetry code: (i) $-x, y, \frac{3}{2}-z$.

After checking their presence in a difference map, all H atoms were geometrically fixed and allowed to ride on their attached atoms.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 1990).

The authors would like to thank the Malaysian Government and Universiti Sains Malaysia for research grant R\&D No. 305/PFIZIK/610961, and AU wishes to thank Universiti Sains Malaysia for a Visiting Postdoctoral Fellowship.

References

Haldar, M., Kar, G. K. \& Ray, J. K. (1997). Synth. Lett. pp. 1057-1060.
Joseph, P. S., Selladurai, S., Kannan, S. \& Parthasarathi, V. (1991). Acta Cryst. C47, 674-676.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Ray, J. K., Gupta, S., Pan, D. \& Kar, G. K. (2001). Tetrahedron. In the press. Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXTL Software Reference Manual. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Spek, A. L. (1990). Acta Cryst. A46, C-34.

